跳到主要內容
:::

教育百科logo

::: 傅(立葉)‧貝(色耳)二氏展開式 - 教育百科
國家教育研究院辭書
基本資料
英文: Fourier-Bessel expansion
作者: 陳正興
日期: 2002年12月
出處: 力學名詞辭典
辭書內容
名詞解釋:
  這是以級數展開方法解克卜勒方程式所得到的結果。因展開式之係數為包含Bessel函數之Fourier係數,故稱為傅‧貝二氏展開式。
  參見Kepler's equation一詞,克卜勒方程式為:
  M=E-esin E
  式中M為平均方位角(mean anomaly);e為離心率(eccentricity);E為偏心角(eccentric anomaly)。其微分式為:
  dE=dM/(1-ecos E)
  式中1/(1-ecos E)為M之周期函數,以2π為周期,因此可用Fourier級數展開:
  
  式中A0、A1、A2、…為一般Fourier係數,即:
  
  式中 為第一類k階Bessel函數(Bessel function of the first kind of order k)。因此,將克卜勒方程式的微分式積分可求得:
  
  此即傅‧貝二氏展開式。
  此級數對小 e 值收斂很快,對太陽系之主要行星皆適用。取到e5項時,J1(e)=(e/2)[(1-(e2/8)+(e4/192))],J2(2e)=(e2/2)[1-(e2/3)],J3(3e)=(9e3/16)[1-(9e2/l6)],餘類推。
資料來源: 國家教育研究院_傅(立葉)‧貝(色耳)二氏展開式
授權資訊: 資料採「 創用CC-姓名標示- 禁止改作 臺灣3.0版授權條款」釋出
貓頭鷹博士
你喜歡貓頭鷹博士嗎

針對貓頭鷹博士的服務你會給幾顆星呢

回到頁面頂端圖示