跳到主要內容
:::

教育百科logo

::: 純量乘積 - 教育百科
國家教育研究院辭書
基本資料
英文: scalar product
作者: 張式魯
日期: 2002年12月
出處: 力學名詞辭典
辭書內容
名詞解釋:
  純量乘積是由向量空間對應純量的一種運算,通常採用的符號為一點,故又稱點乘積(dot product),例如向量A與B的純量積可寫為A.B。純量積的定義是為了便於描述向量的若干幾何性質。兩個單位向量uA與uB的純量積可以寫為兩者之間的夾角餘弦:uA.uB=cos(θAB),於是向量A=AuA與B=BuB的純量積可寫為:
  
  若A與B為相互垂直的向量,則A.B=0。一般而言,A沿B方向的分向量(亦即A在B方向的投影),可以寫為:
  
  同理A在垂直座標軸(單位向量以i,j,k表之)上的分量分別為A(uA.i)i,A(uA.j)j與A(uA.k)k,其中(uA.i),(uA.j)與(uA.k)稱為A的方向餘弦。
資料來源: 國家教育研究院
授權資訊: 資料採「 創用CC-姓名標示- 禁止改作 臺灣3.0版授權條款」釋出
貓頭鷹博士
你喜歡貓頭鷹博士嗎

針對貓頭鷹博士的服務你會給幾顆星呢

回到頁面頂端圖示