跳到主要內容
:::

教育百科logo

::: 轉換矩陣 - 教育百科
國家教育研究院辭書
基本資料
英文: transformation matrix
作者: 蔡益超
日期: 2002年12月
出處: 力學名詞辭典
辭書內容
名詞解釋:
  如圖所示為二維梁元素,其桿件座標系以 表示,因此在這座標系下,節點i的節點力為 ;節點j的節點力為 。節點i的位移為 ;節點j為 。如果整體結構的座標系為x,y,則節點力為私xi,yi,mi;節點位移為ui,vi,θi;節點j亦有其節點力與位移。吾人常需將此兩套座標的節點力與位移做轉換,就得利用轉換矩陣。譬如以節點力而言,有如下關係:
  
  即:
  
  式中,T即稱為轉換矩陣。此矩陣為正交矩陣,T-1=TT。
  對節點位移而言,亦有相同的關係,即:
  
  桿件的勁度矩陣[k],通常先在桿件座標下建立,因此滿足下式:
  
  茲將(1)(2)式代入,並利用T-1=TT的關係,可得:
   X=TT[k]TU
   =[K]U
  則[K]=TT[k]T稱之為對整體座標的桿件勁度矩陣。由以上可知,轉換矩陣在結構直接勁度法分析中的重要性。
資料來源: 國家教育研究院_轉換矩陣
授權資訊: 資料採「 創用CC-姓名標示- 禁止改作 臺灣3.0版授權條款」釋出
貓頭鷹博士
你喜歡貓頭鷹博士嗎

針對貓頭鷹博士的服務你會給幾顆星呢

回到頁面頂端圖示