跳到主要內容
:::

教育百科logo

::: 二維波動 - 教育百科
國家教育研究院辭書
基本資料
英文: two-dimensional wave motion
作者: 吳政忠
日期: 2002年12月
出處: 力學名詞辭典
辭書內容
名詞解釋:
  在一卡氏座標x1-x2-x3裡,波動位移或其引致之動態應力通常為x1,x2x3的函數。當一波動問題其徹體力,位移及動態應力均只為兩個座標之函數(如x1, x2)時,一般稱之為二維波動。二維波動問題因在第三座標(x3)之微分為零,因之三維之波動方程可分離成兩個相互獨立的波動系統。一為反平面剪力波動問題,其不為零之位移,只有在x3座標方向之位移u3(x1,x2,t),只為x1、x2之函數。另一為平面波動問題,其不為零之位移則為x1及x2座標方向之位移u1(x1,x2,t)及u2(x1,x2,t)。
  平面波動問題又可細分為平面應變及平面應力兩種情況。平面應變波動其所有之變數均只為x1,x2兩空間座標之函數,如一無限城內有一線荷重沿±x3方向無限延伸,即為平面應變波動問題。平面應力波動則指,在x3=常數之平面上之應力均為零所衍生之二維波動問題。當在一薄板厚度上施加一荷重,則可模擬平面應力之波動。就波動方程之形式而言,平面應變與平面應力波動問題是相同的;其相異之處共只為波動方程裡的係數不同而已。
資料來源: 國家教育研究院_二維波動
授權資訊: 資料採「 創用CC-姓名標示- 禁止改作 臺灣3.0版授權條款」釋出
貓頭鷹博士
你喜歡貓頭鷹博士嗎

針對貓頭鷹博士的服務你會給幾顆星呢

回到頁面頂端圖示