:::
多元共線性 - 教育百科
多 | |
元 | |
共 | |
線 | |
性 |
國家教育研究院辭書
基本資料
英文: | Multi-Collinearity |
作者: | 余民寧 |
日期: | 2000年12月 |
出處: | 教育大辭書 |
辭書內容
名詞解釋: 多元共線性是指多元迴歸分析中,自變項之間有相關存在的一種現象,是一種程度的問題(degree of matters),而不是全有或全無(all or none)的狀態。多元共線性若是達嚴重的程度時,會對多元迴歸分析造成下列的不良影響: 1.膨脹最小平方法(least squares)估計參數值的變異數和共變數,使得迴歸係數的估計值變得很不精確; 2.膨脹迴歸係數估計值的相關係數; 3.膨脹預測值的變異數,但對預測能力不影響; 4.造成解釋迴歸係數及其信賴區間估計之困難; 5.造成整體模式的考驗達顯著,但各別迴歸係數之考驗不顯著的矛盾現象和解釋上之困擾; 6.造成迴歸係數的正負號與所期望者相反的衝突現象,這是由於自變項間之壓抑效果(suppress effect)造成的。 一個比較簡單的診斷方法是察看自變項間的相關係數矩陣,看看該矩陣中是否有元素值(即自變項兩兩之間的相關係數值)是大於.90以上者,若有,即表示該二變項互為多元共線性變項,並認為該迴歸分析中有嚴重的多元共線性問題存在。另一個比較正式、客觀的診斷法,則為使用第j個自變項的「變異數膨脹因子」(variance inflation factor)作為判斷的指標,凡變異數膨脹因子指標值大於10者,即表示第j個自變項是一個多元共線性變項。在一般的迴歸分析中,針對這種多元共線性問題,有些統計學家會建議將多元共線性變項予以刪除,不納入迴歸方程式中。但避免多元共線性問題所造成困擾的最佳解決方法,不是刪除該具有多元共線性變項,而是使用所謂的「偏差迴歸分析」(biased regression analysis, BRA)。其中以「山脊型迴歸」(ridge regression)最受到學者們的重視和使用;除此之外,尚有「主成分迴歸」(principal component regression)、「潛在根迴歸」(latent root regression)、「貝氏法迴歸」(Baysean regression)、「遞縮式迴歸」(shrinkage regression)等,不過這些偏差迴歸分析法所獲得的迴歸係數值都是「有偏差的」(biased),亦即這些迴歸係數的期望值不等於母群體的迴歸係數值,所以稱作偏差迴歸係數估計值,而本補救多元共線性問題的方法即稱作偏差迴歸分析法。 |
|
資料來源: | 國家教育研究院_多元共線性 |
授權資訊: | 資料採「 創用CC-姓名標示- 禁止改作 臺灣3.0版授權條款」釋出 |
貓頭鷹博士