:::
題目難度指數 - 教育百科
題 | |
目 | |
難 | |
度 | |
指 | |
數 |
國家教育研究院辭書
基本資料
英文: | ltem Difficulty lndex |
作者: | 簡茂發 |
日期: | 2000年12月 |
出處: | 教育大辭書 |
辭書內容
名詞解釋: 題目的難度與測驗的效率(effectiveness)有關,難度分析的主要目的在於確定每一個題目的難易程度,題目難度適當是構成優良測驗的必要條件。題目的難易程度通常以全體受試者答對或通過該題的百分比(percentage passing)表示。這個百分比即稱為難度指數,其計算公式為:P=R/N。上式中,P代表題目的難度指數,R為答對該試題的人數,N為全體受試者的人數。如在200名預試的學生中,答對某一題目者有52人,則其難度為:52/200=.26(或26%)。 另一種題目難度的求法,係先將受試者依照測驗總分的高低次序排列,然後把得分最高與得分最低的,各取全體總人數的27%,定為高分組和低分組,再分別求出此兩組在某一題目上通過人數的百分比,以兩組百分比的平均數作為該試題的難度。其計算公式如下: P=(PH+PL)/2。 上式中P代表題目的難度指數,PH為高分組通過該題人數的百分比,PL為低分組通過該題人數的百分比。如某題高分組有74%答對,低分組有22%答對,則該題的難度指數為:(.74+.22)/2=.48(或48%)。 以P表示題目的難度指數,P值越大,難度越低;P值越小,難度越高。如一測驗中,第一題、第二題、第三題通過人數的百分比(P)依次為20%、30%、40%,則第一題的難度最高,第二題的難度次之,第三題的難度最低。不過P值是一種順序量尺(ordinal scale),差距單位並不相等,因而只能表示題目難易的相對位置,無法指出各難度之間差異的大小。上例中的第一題與第二題在難度指數上的差別量,並不等於第二題與第三題在難度指數上的差別量。針對此點,美國教育測驗服務社(Educational Testing Service, ETS)另創一類具有等距量尺(interval scale)的難度指數,以△(delta)表示。是一種以13為平均數、4為標準差、下限為1、上限為25的標準分數。△值越小,難度越低;越大難度越高。不但可以表示題目難度的相對位置,而且可以指出不同難度之間的差異數值。這種難度指數條基於題目所測量的特質,呈常態分配的假設,認為題目的難度可在常態分配曲線的橫軸上某一點以離差分數(deviation score)表示。其算法係根據答對某一題的人數百分比與答錯該題的人數(包括未作答者)百分比,使前者在右,後者在左,找出兩者在常態分配曲線橫軸上的分界點,此點的相對位置以標準差為單位表示,即為x再按下列公式計出△值:△=13+4x。 |
|
資料來源: | 國家教育研究院_題目難度指數 |
授權資訊: | 資料採「 創用CC-姓名標示- 禁止改作 臺灣3.0版授權條款」釋出 |
貓頭鷹博士